Recent Results From

G. Watts (University of Washington)

For the DØ Collaboration

ElectroWeak

QCD

Top

Higgs

Second Half of New Spring Results Presentation

Completing the SM

 $\sigma(WH \rightarrow Wb\overline{b})$, $\sigma(Wb\overline{b})$ $\sigma(Zb)/\sigma(Zj)$, $\sigma(H \rightarrow WW^*)$, Single Top

Precision Tests of the SM

 $d\sigma/dp_T$, $d\sigma/dM_{ii}$, Azimuthal Jet Decorrelations, $\sigma(t\bar{t})$

Searches for physics beyond the SM

 $\sigma(W\gamma)$, $\sigma(H\rightarrow \gamma\gamma)$, $\sigma(hb\overline{b})$

New Phenomena and B Physics – see talk by A. Nomerotski on March 26th...

Wy Cross Section

Trilinear Gauge Couplings

Small in SM Sensitive to new Physics W p_T and M_{W_Y}

<u>Signature</u>

e or μ and ν and photon

Primary Background

W+Jets, jet fakes a γ .

e channel: 162.3 pb^{-1} μ channel 82.0 pb^{-1}

Wy Backgrounds

W+Jets

Jet fakes a photon

Determine photon fake rate from data

0.3% - 0.1 % for 10 GeV to 50 GeV jets

Expected Background Event Counts

	e	μ
W+Jets	80.0 ± 7.4	31.0 ± 10
leX	3.7 ± 0.5	0.6 ± 0.6
Ζγ	-	4.7 ± 2.0
$W\gamma \rightarrow \tau \nu \gamma$	3.4 ± 1.1	0.9 ± 0.3
Total	87.1 ± 7.5	37.0 ± 10

Lepton + electron with out track + missing E_T tt, etc.

Use sample of events with good electron and apply tracking efficiency.

MC based

Wy Results

	W→ev	$W \rightarrow \mu \nu$
Background Expected	87.1 ± 7.5	37 ± 10
Observed	146	77

$$\sigma(pp \rightarrow W\gamma \rightarrow l\nu\gamma + X)$$

19.3 ± 6.7 ± 1.2(lumi)

Signal Eff calculated using Baur MC + Pythia

First Step...

With increased data detailed W_{γ} kinematic studies will be possible

QCD Inclusive Jet and Dijet Cross Sections

Reliable Test of NLO Perturbative QCD

Jet Evolution, Parton Distribution Functions, new physics at α_s .

Traditional place to search for new physics

Quark Compositeness, etc.

Run 2 Datasets

Better discrimination of PDFs

Jet Energy Scale is largest systematic error

Look at both Forward and Central Regions

Central Region - large transverse energy - most sensitive to new physics and PDFs

Forward Region - Less sensitive to new physics, but still sensitive to PDFs

$d\sigma/dp_T$

Stay tuned for improvements to JES

M_{jj}

The "Biggest" QCD Event

Jet Azimuthal Decorrelations

Leading Order pQCD

Jets are back-to-back

$$\Delta \phi_{12} = \pi$$

 $\Delta \phi_{12}$ is sensitive to jet formation without having to measure 3^{rd} jet directly!

Jet Azimuthal Decorrelations

Measure $\Delta \phi_{dijet}$ Compare to a LO & NLO MC

LO MC 3 jet product
has pole or

- LO MC 3 jet $\Delta \phi_{dijet}$ > $2\pi/3$

Not compatible with a LO description

Jet Azimuthal Decorrelations

Further tests of MC Model

ISR rate in MC has strong effect on matching as well.

Important for $t\bar{t}$, H mass, etc.

More data, better JES will continue to improve the power of this measurement.

Non SM $H \rightarrow \gamma \gamma$

SM $H \rightarrow \gamma\gamma$

Branching Ratio is small, 10^{-3} , 10^{-4}

Beyond SM Suppress Higgs Products

Fermiphobic or Top Color Higgs $BR(H \rightarrow \gamma \gamma)$ enhanced

Require 2 isolated EM Objects p_T>25 GeV

Backgrounds

Z/y ee - (data) $\gamma\gamma$ production (MC) QCD w/jets misidentified (data)

Non SM $H \rightarrow \gamma \gamma$

Look for resonance in M_{yy}

None found, so set limits...

Systematic Errors

Dominated by Luminosity determination And photon fake rate determination

Split the detector by regions according to fake rates

	Data	Total BKG	QCD	DA	99
CCCC	93	54.4 ± 28.0	42.7 ± 28.0	1.4 ± 1.3	8.3 ± 0.6
CCEC	97	68.8 ± 45.8	64.0 ± 45.7	3.0 ± 3.0	1.8 ± 0.1
ECEC	41	20.8 ± 10.4	13.1 ± 10.0	6.7 ± 3.0	1.0 ± 0.1

Non SM $H \rightarrow \gamma \gamma$

Fermiophobic model from A. G. Akeroyd, Phys Rev. Lett. 368, 89 (1996)

Analysis improvements possible by making use of CPS, etc.

Tagging a B

CSIP Algorithm

Counting Signed Impact Parameter

Based on Impact Parameter Significance

 $S(IP) = IP/\sigma(IP)$

Requirements to tag a jet:

- at least 2 tracks with S(IP) > 3
- or at least 3 tracks with S(IP) > 2

Per Taggable Jet

Rates Measured in

JLIP Algorithm

Jet Lifetime Impact Parameter

Based on Impact Parameter Significance

Probability distributions P(Track from PV) Defined for each class of tracks # of SMT Hits, p_T , etc.

Each jet assigned P(light quark)

jet lifetime probability (p1403)

SVT Algorithm

Secondary Vertex Tagger

Reconstruct Vertices using displaced tracks Cut on Decay Length Significance

$$S(L_{xy}) = L_{xy}/\sigma(L_{xy}).$$

B Tagging

Performance on signal

```
tt lepton+jets ~ 56%
Single Top (s channel) ~ 52%
Wbb ~ 52%
Wj ~ 0.3%
```

Combining the Taggers

Already studied the correlations

Working now on making a combination

Higgs Production at Large $tan\beta$

- Low $tan \beta$, \rightarrow Standard Model Higgs
- High $tan \beta$, \rightarrow enhanced bbH
 - Cross section rises like tan²β
- · Substantial improvements in Theory understanding since Run 1

Use 3 b-tags

Backgrounds Include:

QCD: bbh, bbjj, bbbb EW/St: Zb, Z, tt

MSSM

4 Jet HF MC QCD not well tested: design around its use

Look for excess in di-jet mass window

Use shoulders to calibrate

Higgs Production at Large $tan\beta$

Trigger on 3 jets + ~60% efficiency

3 Jets In Event 20, 15, 15 GeV

Background shape determined from data

Normalization determined by fitting to region ±1 σ from expected higgs signal

Results

- Set limit using fitted distributions (TLimit)
- Will be down at 40 with M_A =100 at 1.6 fb⁻¹
 - No analysis improvements taken into account!

Higgs Decays

Search strategies are a function of Decay Channel and Production Channel

Nominal Mass Reach Spans Two Decay Modes

Low Mass Higgs Searches

$$m_H < 135 GeV/c^2$$
 $H \rightarrow b\bar{b}$

High Mass Higgs Searches

$$m_H > 120 GeV/c^2$$
 $H \rightarrow WW^*$

Higgs Production

Wbb, electron channel

- Same final state as WH
 - One of background processes
- Event selection include
 - Central isolated e, p_T > 20 GeV
 - Missing E_T > 25 GeV
 - ≥ two jets: E_T > 20 GeV, |η| < 2.5
- 2587 evts. in L_{int} =174 pb⁻¹ of data

Fair understanding of data

- Simulations with Alpgen plus Pythia through detailed detector response
- Cross sections normalized to MCFM NLO calculations

Wbb, B Tagging

Suppress Top Production

Require $N_J = 2$, 3-tag algorithm

Observe 2 evts, expect 2.5±0.5

Wbb and WH Limits

Source	Uncertainty (%)
Jet energy scale	14
Jet ID	7
b-tagging	11
Trigger & e ID	5
EM scale	5
MC simulations	15
Total	26

Dijet Mass (GeV)

Wbb	Wc(c)	Wjj	††+†	Others
1.4±0.4	0.3±0.1	0.1±0.03	0.6±0.2	0.1±0.03

Before Tag

For WH limit use mass window. Expect 0.03 WH, 0.54 from SM backgrounds, observe 0

σ(Wbb) < 20.3 pb Prefer Wbb at 2σ

 σ (WH)B(H \rightarrow bb) < 12.4 pb (M_H = 115 GeV/c²) @ 95% C.L.

$Z(\rightarrow ee/\mu\mu)b$

- Background to ZH production
- Benchmark for SUSY Higgs production via gb→bh
- Probes PDF of the b-quark

Measure cross section ratio $\sigma(Z+b)/\sigma(Z+j)$ Many uncertainties cancel

Isolated e/m with $p_T > 15/20$ GeV, $|\eta| < 2.5/2.0$ Z peak for signal, side bands for bkgd. evaluations Jet ET > 20 GeV, $|\eta| < 2.5$ At least one b-tagged jet

L=184 (ee), 152 (μμ) pb⁻¹

Jet Flavor Content Calculated with MCFM (NLO) b/c Ratio

Background

QCD and Z/γ

$Z(\rightarrow ee/\mu\mu)b$

Clear Indication of Heavy Flavor

$$R = \frac{\sigma(p\overline{p} \to Zb)}{\sigma(p\overline{p} \to Zj)}$$

Source	Uncertainty (%)
Jet tagging	16
Jet energy scale	11
Bkgd. estimation	6
σ(Z+c)/σ(Z+b)	3
Total	20

$$R = 0.024 \pm 0.005(stat)_{-0.004}^{+0.005}(syst)$$

Theory

J. Campbell, R. K. Ellis, F. Maltoni, S. Willenbrock
hep-ph/0312024

R~0.02

$H \rightarrow WW^{(*)} \rightarrow |+|-vv$

- Event selection include
 - Isolated e/µ
 - $p_T(e_1) > 12 \text{ GeV}, p_T(e_2) > 8 \text{ GeV}$
 - $p_T(e/\mu_1) > 12 \text{ GeV}, p_T(e/\mu_2) > 8 \text{ GeV}$
 - $p_T(\mu_1) > 20 \text{ GeV}, p_T(\mu_2) > 10 \text{ GeV}$
 - Missing E_T greater than
 - 20 GeV (ee, eμ); 30 GeV (μμ)
 - Veto on
 - Z resonance
 - Energetic jets

L = 180 (ee), 160 (e μ) and 150 ($\mu\mu$) pb⁻¹

$H \rightarrow WW^{(*)} \rightarrow |+|-vv$

Spin Correlations

 $\Delta \phi(II)$ - Azimuthal Angle

Leptons from Higgs Tend to be collinear

WW	W+jets	WZ	††
2.51 ±0.05	0.34 ±0.02	0.11 ±0.01	0.13 ±0.01

Can't reconstruct mass due to presence 2 neutrinos

$H \rightarrow WW^{(*)} \rightarrow |+|-vv$

	ee	еµ	μμ
Observed	2	2	5
Expected	2.7±0.4	3.1±0.3	5.3±0.6

Signal acceptance is ~ 0.02 - 0.2 depending on the Higgs mass/final state

Top Quark

Precision Measurement in Run 2

Cross Section

Cross Check SM with M_{Top} "Rare" Decays

Mass

Constrain M_{Higgs}

Run 1 World Average Top Mass Run 2 Cross Sections All jets, dilepton, l+jets

Stay tuned for τ 's

Di-Lepton Top Cross Section

Small cross section Relatively free of SM backgrounds

$\int \mathcal{L} (pb^{-1})$	ee	$e\mu$	$\mu\mu$
total	156.33	142.73	139.58

SM Backgrounds

$$\left. egin{array}{ll} Z/\gamma
ightarrow l^+ l^- jj \ WW
ightarrow l^+ l^- jj \end{array}
ight.
ight.
ight.
ight.$$

Instrumental Fakes

Category	ee	$\mu\mu$	$e\mu$	$\ell\ell$
Z/γ^*	0.15 ± 0.10	2.04 ± 0.49	0.47 ± 0.17	2.66 ± 0.53
WW	0.14 ± 0.08	0.10 ± 0.04	0.29 ± 0.06	0.53 ± 0.11
Fakes	0.91 ± 0.30	0.46 ± 0.20	0.19 ± 0.06	1.56 ± 0.36
Total background	1.20 ± 0.33	2.61 ± 0.53	0.95 ± 0.19	4.76 ± 0.65
Expected signal	1.39 ± 0.19	0.83 ± 0.15	3.77 ± 0.44	5.99 ± 0.50
SM expectation	2.59 ± 0.38	3.44 ± 0.55	4.73 ± 0.49	10.76 ± 0.83
Selected events	5	4	8	17

Cuts

ee

Cut	Data	Total	Fakes	$Z/\gamma^* \to \tau\tau$	WW	$t\bar{t}$
$N_{ele}^{p_T > 20} \ge 2 + E_T \text{ cut}$	17	14.29 ± 2.47	10.11 ± 2.35 1.89 ± 0.51	$0.22\pm~0.06$	$2.05{\pm}0.73$	$1.91^{+0.18}_{-0.21}$
$N_{jets} \ge 2$ $N_{jets}^{p_T > 20} > 2$	6	$3.92^{+0.57}_{-0.60}$	1.89 ± 0.51	$0.19^{+0.08}_{-0.14}$	$0.27^{+0.16}_{-0.13}$	$1.57^{+0.18}_{-0.24}$
$N_{iets}^{p_T > 20} \ge 2$	5	$3.92^{+0.57}_{-0.60} \ 2.59^{+0.36}_{-0.40}$	$0.91 {\pm} 0.30$	$0.15^{+0.07}_{-0.12}$	$0.14^{+0.08}_{-0.07}$	$1.39^{+0.16}_{-0.22}$

μμ

Criteria	Data	Total	Fakes	Z/γ^*	WW	$t \overline{t}$
Preselection cuts					0.276 ± 0.102	
$\Delta\phi(\mu_{leading}, E_T) < 165^{\circ}$ and $M_{\mu\mu}$ cuts	22	27.6 ± 4.8	3.66 ± 0.59	22.7 ± 4.8	0.199 ± 0.074	1.07 ± 0.20
$H_T^\mu > 120~{ m GeV} { m \ cut}$	17				0.152 ± 0.057	
$E_T > 35 \text{ GeV cut}$	4	$3.44 \pm .55$	0.46 ± 0.20	2.04 ± 0.49	0.104 ± 0.040	0.83 ± 0.15

 $e\mu$

Cut	Data	Total	Fakes	$Z/\gamma^* \rightarrow$	ll + jets	$WW \rightarrow e\mu$	$t\overline{t}$
				$Z/\gamma^* \rightarrow \tau \tau$	$Z/\gamma^* \rightarrow \mu\mu$		
One tight EM and one isolated							
muon with $\Delta R(e,\mu) > 0.25$	113	$110.79^{+6.70}_{-6.32}$	9.39 ± 2.91	$54.49^{+4.76}_{-4.33}$	$30.43^{+3.56}_{-3.39}$	$10.48^{+0.96}_{-1.01}$	$5.98^{+0.47}_{-0.48}$
$E_T > 25 \; \mathrm{GeV}$	29	$23.80^{+2.17}_{-2.37}$	3.80 ± 1.18	$3.93^{+0.72}_{-0.81}$	$2.95^{+0.91}_{-0.95}$	$7.74^{+1.32}_{-1.58}$	$5.38^{+0.39}_{-0.44}$
Two jets with $p_T > 15 \text{ GeV}$	10	$6.57^{+0.56}_{-0.54}$	0.49 ± 0.15	0.95	+0.34 -0.30	$0.67^{+0.12}_{-0.13}$	$4.45^{+0.38}_{-0.40}$
Two jets with $p_T > 20 \text{ GeV}$	8	$5.65^{+0.51}_{-0.56}$	0.31 ± 0.09	0.71	+0.27 -0.23	$0.46^{+0.11}_{-0.11}$	$4.17^{+0.42}_{-0.49}$
$H_T^{leading\ lepton} > 140\ { m GeV}$	8	$4.73^{+0.46}_{-0.51}$	0.19 ± 0.06	0.47	+0.18 -0.16	$0.29^{+0.06}_{-0.06}$	$3.77^{+0.42}_{-0.47}$

Dilepton Cross Section

Dilepton Cross Section

ee:
$$\sigma_{t\bar{t}} = 19.1^{+13.0}_{-9.6} \text{ (stat)} ^{+3.7}_{-2.6} \text{ (syst)} \pm 1.2 \text{ (lumi) pb;}$$

$$\mu\mu$$
: $\sigma_{t\bar{t}} = 11.7^{+19.7}_{-14.1} \text{ (stat)} ^{+7.9}_{-5.0} \text{ (syst)} \pm 0.8 \text{ (lumi) pb;}$

$$e\mu: \sigma_{t\bar{t}} = 13.1^{+5.9}_{-4.7} \text{ (stat) } ^{+2.2}_{-1.7} \text{ (syst) } \pm 0.9 \text{ (lumi) pb;}$$

dilepton :
$$\sigma_{t\bar{t}} = 14.3^{+5.1}_{-4.3} \text{ (stat)} ^{+2.6}_{-1.9} \text{ (syst)} \pm 0.9 \text{ (lumi) pb.}$$

Cross section shows some excess which is still consistent with the standard model expectation. We are looking forward to collecting more data!!

Systematics Driven Method

LP'03 results were close to being systematics driven

Fit shapes from likelihood discriminate of signal and background

- Preselection cuts removes all but W+Jets
- ② Determine Topological Variables ← No B-tagging
- 3 Create Likelihood Discriminent
- 4 Fit data to combinations of backgrounds and signal

Preselection Cuts include NJets>=4, etc.

Topological Variables

- · Good S:B
- · Minimize JES
- · Small Correlations

H_{T2}/H_Z

Centrality H_T of all but leading jet

K_{Tmin}

 K_T of #4 jet relative to #3 jet.

	muons	electrons
Nev	100	136
fitted N ^w	74.7 + 12.7 - 12.0	94.6 + 15.8 - 15.0
fitted N ^{gcD}	7.1 + 0.9 - 0.9	14.1 + 1.2 - 1.2
fitted N ^{tt}	17.8 + 9.9 - 8.7	27.5 + 12.7 - 11.7

All Jets Cross Section

46% of ttbar production QCD is many orders mag greater Simple Cuts aren't enough!

NN are trained on data for background, and ttbar MC for signal

Discriminating Variables

Background model is data-derived

Variables are designed to address different aspects of the background Energy Scale - H_T , sqrt(s)

Soft non-leading Jets - H^{3j}_T, E_T^{5,6}, N_j>

Event Shape - Sphericity, aplanarity

Rapidity - Centrality, <η²>

Top Properties - Top and W Mass Likelihood, M_{WW}, M_{tt}, min dijet masses

JES Systematics

All Jets Cross Section

	Uncertainty (%)
Vertex ID	1
Jet ID	10
JES	28
Jes Resolution	0.6
Top Mass	7.6
Trigger	4
Tagging	4.0
Total	31

220 events pass all cuts Expect 186 ± 5(stat) ± 7.5(sys)

 $\sigma(t\bar{t} \to jjjjjj) = 7.7^{+3.4}_{-3.3}(stat)^{+4.7}_{-3.8}(sys) \pm 0.5(lumi)pb$

Top Mass Combination

DØ New Run I Top Mass Result is now part of the TeV M_{Top} combination

Old Combination $M_{+} = 174.333 \pm 5.141$

(see Juan's April 25 2003 W&C)

Really want to talk about...

Squeezing Run 2 Top and W Mass Errors

Extensive program in place

Coming to a Wine And Cheese near you soon...

W/Z Cross Sections

Forward Proton Detector

9-17 mm from beam @ 30 m

0.92 < t < 3 GeV² @1960 GeV

Analysis in progress dN/dT, diffractive jets

Single Top

Single Top Production gives you access to

 $B(t\rightarrow WB)$

 $|V_{tb}|$

W Helicity

Top Polarization

Top Width

Anomalous couplings

Rare Decays

Preselect Events Apply BTagging

Apply Topological Cuts

Backgrounds

QCD (fakes) (Data) W+Jets (Data) ttbar (MC)

Expected Sensitivity

Electron Channel	Muon Channel

		on on onan			
	SLT	SVT	JLIP	SLT	SVT
s-channel	0.67± 0.14	1.87 ± 0.46	1.88± 0.46	0.63± 0.13	1.38± 0.35
t-channel	0.95± 0.20	3.14 ± 0.76	3.20 ± 0.82	0.88± 0.19	2.19± 0.56
tt	9.60± 1.65	23.31± 4.90	24.50± 5.48	8.43± 1.44	18.57± 3.75
non-top	31.1± 5.2	63.5± 12.3	71.7± 13.7	34.3± 5.1	67.0± 11.8
Total expected	42.4± 5.4	91.9± 13.3	96.3± 14.8	44.2± 5.3	89.2± 12.4
Observed	49	88	99	48	94

We have not applied final topological cuts yet!

Expected Limit!

	Without Systematics	With Systematics
$\sigma_{\!s}$ (pb)	<6.4	<13.8
σ_{t} (pb)	<9.0	<19.8
σ_{s+t} (pb)	<7.9	<15.8

Already better than Run 1 limits!

Conclusions

Home

Conferences

Approval Timelines

Algorithm Groups

Physics Groups

Recent Approved Results

Below you will find recently approved results for conference presentations. Please contact appropriate <u>Conveners</u> if you have questions. Figures can be found in the same directory as the paper.

- B Physics
 - Sensitivity Analysis of Rare Bs→μμ Decays
 - Óbservation of Semileptonic B decays to Narrow D** Mesons
 - Flavor Oscillations in Bd Mesons with OS Muon Tagging
 - Measurement of Lifetime Ratio for B0 and B+ Mesons
 - Measurement of Bd Lifetime in Bd->J/psi K0 Decays
 - Observation of X(3872) at DØ
- Electroweak
 - Measurement of the Cross Section for W Boson + Photon Production
- Higgs
 - Search for non-SM Light Higgs Bosons in the h→yy Channel
 - A DØ Search for Neutral Higgs Bosons at High tanβ in Multijet Events
 - Search for the Higgs Boson in H→WW→Dilepton Decays
 - v 💳 Kalono politica pietas de artino Appello Appello Appello Appello (Appello Appello Appel

Conclusions

- Taking advantage of the Data
 - QCD program is under way with jet cross sections and studies.
 - Electro weak is moving to the next level of accuracy
 - Higgs is demonstrating an understanding of the most important backgrounds
 - Top has remeasured the cross section.
 - Mass result will appear soon.
 - Many new analyses and conference results.
 - · More in the pipeline!
 - Write-ups available for all analyses
- Improvements On Tap
 - JES
 - Already have another 70 pb⁻¹ on tape.
 - New Ideas...

Jet Cone Algorithm

"particle" = {experiment: calorimeter towers / MC: stable particles / pQCD: partons}

three parameters: $R_{\text{cone}} = 0.7$, $p_{T \, \text{min}} = 8 \, \text{GeV}$, overlap fraction f = 50%

- Use all particles as seeds
 - make cone of radius $\Delta R = \sqrt{(\Delta y^2 + \Delta \phi^2)} < R_{\text{cone}}$ around seed direction
 - proto jet: add particles within cone in the "E-scheme" (adding four-vectors)
 - iterate until stable solution is found with: cone axis = jet-axis
- Use all midpoints between pairs of jets as additional seeds ⇒ infrared safety!!!
 - (repeat procedure as described above)
- Take all solutions from the first two steps:
 - remove identical solutions
 - remove proto-jets with $p_{T\,\mathrm{jet}} < p_{T\,\mathrm{min}}$
- Look for jets with overlapping cones:
 - merge jets, if more than a fraction f of $p_{T \text{ jet}}$ is contained in the overlap region
 - otherwise split jets: assign the particles in the overlap region to the nearest jet
 - (→ and recompute jet-axes)

Jet Cone Algorithm

the cone algorithm used by DØ in Run I differed in the following ways:

- Particles were combined to jets in the " E_T -scheme" ("snowmass convention") instead of the "E-scheme" (adding four-vectors)
 - ⇒ in Run I by definition jet four-vectors were massless
 - ightarrow pseudorapidity η was used instead of rapidity y
 - \rightarrow transverse energy $E_T = E \cdot \sin \theta$ was used instead of transverse momentum p_T

$$\text{please note:} \quad E_T^{E_T-\text{scheme}} \geq p_T^{E-\text{scheme}} \qquad \text{and} \qquad M_{\text{dijet}}^{E_T-\text{scheme}} \leq M_{\text{dijet}}^{E-\text{scheme}}$$

- no midpoints were used as additional seeds
 - \Rightarrow procedure not infrared safe \Rightarrow no predictions from perturbative QCD possible

Dilepton Event

Multi-jet Background

